22,381 research outputs found

    Exact Nonperturbative Unitary Amplitudes for 1->N Transitions

    Full text link
    I present an extension to arbitrary N of a previously proposed field theoretic model, in which unitary amplitudes for 1>81->8 processes were obtained. The Born amplitude in this extension has the behavior A(1>N)tree = gN1 N!A(1->N)^{tree}\ =\ g^{N-1}\ N! expected in a bosonic field theory. Unitarity is violated when A(1>N)>1|A(1->N)|>1, or when N>Ncrite/g.N>\N_crit\simeq e/g. Numerical solutions of the coupled Schr\"odinger equations shows that for weak coupling and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}. The very small size of the coefficient 1/\g2 , indicative of a very weak exponential suppression, is not in accord with standard discussions based on saddle point analysis, which give a coefficient 1. \sim 1.\ The weak dependence on NN could have experimental implications in theories where the exponential suppression is weak (as in this model). Non-perturbative contributions to few-point correlation functions in this theory would arise at order $K\ \simeq\ \left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}inanexpansioninpowersof in an expansion in powers of \g2.$Comment: 11 pages, 3 figures (not included

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Dielectric cure monitoring: Preliminary studies

    Get PDF
    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing

    The non-metallic materials sample array

    Get PDF
    The Non-Metallic Materials Sample Array (MSA) was flown as verification flight instrumentation (VFI) on both Spacelab 1 (SL-1) and Spacelab 2 (SL-2). The basis for materials selection was either previous flight history or probable flight suitability based upon analysis. The observed changes in the optical properties of the exposed materials are, in general, quite minimal; however, this data represents the short exposure of two Space Shuttle missions, and no attempt should be made to extrapolate the long-term exposure. The MSA was in orbit for 10 days at approximately 240 km on SL-1 and for 7 days at approximately 315 km on SL-2. The array was exposed to the solar flux for only a portion of the time in orbit

    Statistics of Oscillator Strengths in Chaotic Systems

    Full text link
    The statistical description of oscillator strengths for systems like hydrogen in a magnetic field is developed by using the supermatrix nonlinear σ\sigma-model. The correlator of oscillator strengths is found to have a universal parametric and frequency dependence, and its analytical expression is given. This universal expression applies to quantum chaotic systems with the same generality as Wigner-Dyson statistics.Comment: 11 pages, REVTeX3+epsf, two EPS figures. Replaced by the published version. Minor changes

    Lattice-corrected strain-induced vector potentials in graphene

    Full text link
    The electronic implications of strain in graphene can be captured at low energies by means of pseudovector potentials which can give rise to pseudomagnetic fields. These strain-induced vector potentials arise from the local perturbation to the electronic hopping amplitudes in a tight-binding framework. Here we complete the standard description of the strain-induced vector potential, which accounts only for the hopping perturbation, with the explicit inclusion of the lattice deformations or, equivalently, the deformation of the Brillouin zone. These corrections are linear in strain and are different at each of the strained, inequivalent Dirac points, and hence are equally necessary to identify the precise magnitude of the vector potential. This effect can be relevant in scenarios of inhomogeneous strain profiles, where electronic motion depends on the amount of overlap among the local Fermi surfaces. In particular, it affects the pseudomagnetic field distribution induced by inhomogeneous strain configurations, and can lead to new opportunities in tailoring the optimal strain fields for certain desired functionalities.Comment: Errata for version

    Some Properties of Amplitudes at Multi Boson Thresholds in Spontaneously Broken Scalar Theory

    Full text link
    It is shown that in a λϕ4\lambda \phi^4 theory of one real scalar field with spontaneous breaking of symmetry a calculation of the amplitudes of production by a virtual field ϕ\phi of nn on-mass-shell bosons all being exactly at rest is equivalent in any order of the loop expansion to a Euclidean space calculation of the mean field of a kink-type configuration. Using this equivalence it is found that all the 1n1 \to n amplitudes have no absorptive part at the thresholds to any order of perturbation theory. This implies non-trivial relations between multi-boson threshold production amplitudes. In particular the on-mass-shell amplitude of the process 232 \to 3 should vanish at the threshold in all loops. It is also shown that the factor n!n! in the 1n1 \to n amplitudes at the threshold is not eliminated by loop effects.Comment: 11 pages including 3 figures, LaTeX, TPI-MINN-92/61-

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    Weak Gravitational Flexion

    Full text link
    Flexion is the significant third-order weak gravitational lensing effect responsible for the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion measurements can be used to measure galaxy halo density profiles and large-scale structure on non-linear scales, via galaxy-galaxy lensing, dark matter mapping and cosmic flexion correlation functions. We describe the origin of gravitational flexion, and discuss its four components, two of which are first described here. We also introduce an efficient complex formalism for all orders of lensing distortion. We proceed to examine the flexion predictions for galaxy-galaxy lensing, examining isothermal sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric and elliptical cases. We show that in combination with shear we can precisely measure galaxy masses and NFW halo concentrations. We also show how flexion measurements can be used to reconstruct mass maps in 2-D projection on the sky, and in 3-D in combination with redshift data. Finally, we examine the predictions for cosmic flexion, including convergence-flexion cross-correlations, and find that the signal is an effective probe of structure on non-linear scales.Comment: 17 pages, including 12 figures, submitted to MNRA
    corecore